Ethical Considerations in AI-Powered Cybersecurity
Main Article Content
Abstract
As organizations increasingly turn to artificial intelligence (AI) for predictive cyber threat intelligence, ethical considerations surrounding its deployment become paramount. This research paper explores the intersection of AI and cybersecurity, focusing on the ethical implications of using AI technologies to predict and mitigate cyber threats. We examine key ethical issues, including data privacy, algorithmic bias, accountability, and the potential for misuse of AI systems in surveillance and enforcement contexts. Through a review of current literature and case studies, we highlight the risks associated with relying on AI for threat intelligence, particularly concerning the transparency of decision-making processes and the consequences of erroneous predictions. Furthermore, we propose a framework for ethical AI deployment in cybersecurity, emphasizing the importance of robust governance, transparency, and inclusivity in AI systems. Our findings underscore that while AI can significantly enhance cyber threat prediction and response, it must be implemented thoughtfully and ethically to ensure trust, compliance, and effectiveness in protecting sensitive data and systems.
Article Details
How to Cite
References
Adams, J. (2019). Cybersecurity in Critical Infrastructure: Challenges and Solutions. Journal of Critical Infrastructure Protection, 10(2), 45-58.
Barranco, M., & Sanchez-Anguix, V. (2020). Machine Learning for Anomaly Detection in Cyber-Physical Systems: A Review. IEEE Transactions on Industrial Informatics, 16(6), 3872-3881.
Chen, C., & Liu, C. (2018). Anomaly Detection in Cyber-Physical Systems Using Machine Learning Techniques: A Review. IEEE Transactions on Industrial Electronics, 65(5), 4399-4409.
Department of Homeland Security. (2021). Critical Infrastructure Cybersecurity: A Review of Policies and Practices. Washington, DC: Government Printing Office.
European Union Agency for Cybersecurity. (2020). Machine Learning for Anomaly Detection in Critical Infrastructure: Challenges and Opportunities. Brussels, Belgium: Publications Office of the European Union.
Federal Energy Regulatory Commission. (2019). Cybersecurity Considerations for Critical Infrastructure Protection. Washington, DC: Government Printing Office.
International Organization for Standardization. (2019). ISO/IEC 27001: Information Security Management Systems - Requirements. Geneva, Switzerland: ISO.
Jajodia, S., Subrahmanian, V., & Swarup, V. (Eds.). (2017). Handbook of SCADA/Control Systems Security. Boca Raton, FL: CRC Press.
Jones, T., & O’Neill, J. (2018). Cybersecurity Challenges in Critical Infrastructure Protection: A Case Study of the Energy Sector. Journal of Cybersecurity, 3(2), 189-203.
Vegesna, V. V. (2018). Analysis of Artificial Intelligence Techniques for Network Intrusion Detection and Intrusion Prevention for Enhanced User Privacy. Asian Journal of Applied Science and Technology (AJAST) Volume, 2, 315-330.
Vegesna, V. V. (2019). Investigations on Different Security Techniques for Data Protection in Cloud Computing using Cryptography Schemes. Indo-Iranian Journal of Scientific Research (IIJSR) Volume, 3, 69-84.
Aghera, S. (2021). SECURING CI/CD PIPELINES USING AUTOMATED ENDPOINT SECURITY HARDENING. JOURNAL OF BASIC SCIENCE AND ENGINEERING, 18(1).
Aghera, S. (2022). IMPLEMENTING ZERO TRUST SECURITY MODEL IN DEVOPS ENVIRONMENTS. JOURNAL OF BASIC SCIENCE AND ENGINEERING, 19(1).
Aghera, S. (2021). SECURING CI/CD PIPELINES USING AUTOMATED ENDPOINT SECURITY HARDENING. JOURNAL OF BASIC SCIENCE AND ENGINEERING, 18(1).
Dhiman, V. (2022). INTELLIGENT RISK ASSESSMENT FRAMEWORK FOR SOFTWARE SECURITY COMPLIANCE USING AI. International Journal of Innovation Studies, 6(3).
Dhiman, V. (2021). ARCHITECTURAL DECISION-MAKING USING REINFORCEMENT LEARNING IN LARGE-SCALE SOFTWARE SYSTEMS. International Journal of Innovation Studies, 5(1).
Dhiman, V. (2020). PROACTIVE SECURITY COMPLIANCE: LEVERAGING PREDICTIVE ANALYTICS IN WEB APPLICATIONS. JOURNAL OF BASIC SCIENCE AND ENGINEERING, 17(1).
Dhiman, V. (2019). DYNAMIC ANALYSIS TECHNIQUES FOR WEB APPLICATION VULNERABILITY DETECTION. JOURNAL OF BASIC SCIENCE AND ENGINEERING, 16(1).
Mettikolla, P., Calander, N., Luchowski, R., Gryczynski, I., Gryczynski, Z., Zhao, J., ... & Borejdo, J. (2011). Cross-bridge kinetics in myofibrils containing familial hypertrophic cardiomyopathy R58Q mutation in the regulatory light chain of myosin. Journal of theoretical biology, 284(1), 71-81.
Mettikolla, P., Calander, N., Luchowski, R., Gryczynski, I., Gryczynski, Z., & Borejdo, J. (2010). Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence. Journal of Biomedical Optics, 15(1), 017011-017011.
Mettikolla, P., Luchowski, R., Gryczynski, I., Gryczynski, Z., Szczesna-Cordary, D., & Borejdo, J. (2009). Fluorescence lifetime of actin in the familial hypertrophic cardiomyopathy transgenic heart. Biochemistry, 48(6), 1264-1271.
Mettikolla, P., Calander, N., Luchowski, R., Gryczynski, I., Gryczynski, Z., & Borejdo, J. (2010). Observing cycling of a few cross‐bridges during isometric contraction of skeletal muscle. Cytoskeleton, 67(6), 400-411.
Muthu, P., Mettikolla, P., Calander, N., & Luchowski, R. 458 Gryczynski Z, Szczesna-Cordary D, and Borejdo J. Single molecule kinetics in, 459, 989-998.
Borejdo, J., Mettikolla, P., Calander, N., Luchowski, R., Gryczynski, I., & Gryczynski, Z. (2021). Surface plasmon assisted microscopy: Reverse kretschmann fluorescence analysis of kinetics of hypertrophic cardiomyopathy heart.