Cost optimization and affordable health care using AI

Main Article Content

Sangeeta Singhal

Abstract

This research paper delves into the transformative potential of artificial intelligence (AI) in optimizing costs and promoting affordability within the healthcare sector. With escalating healthcare expenses posing a significant global challenge, our study aims to investigate how AI technologies can be strategically implemented to streamline operational processes, enhance resource utilization, and ultimately contribute to the delivery of more cost-effective and accessible healthcare services.

Article Details

How to Cite
Cost optimization and affordable health care using AI. (2023). International Machine Learning Journal and Computer Engineering, 6(6), 1-12. https://mljce.in/index.php/Imljce/article/view/22
Section
Articles

How to Cite

Cost optimization and affordable health care using AI. (2023). International Machine Learning Journal and Computer Engineering, 6(6), 1-12. https://mljce.in/index.php/Imljce/article/view/22

References

Chen, M., Hao, Y., Hwang, K., & Wang, L. (2020). An intelligent workflow optimization system for healthcare service. Journal of Ambient Intelligence and Humanized Computing, 11(8), 3485–3496.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2019). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410.

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679.

Womack, J. P., Jones, D. T., & Roos, D. (2019). The machine that changed the world: The story of lean production—Toyota's secret weapon in the global car wars that is now revolutionizing world industry. Simon and Schuster.

Chen, J. H., Asch, S. M., & Machine, E. L. O. (2018). The utility of artificial intelligence in diagnostic imaging. JAMA, 320(23), 2428–2429.

Chen, Y. W., Lin, S. J., & Kao, Y. H. (2020). Enhancing emergency medical service response using internet of things-based artificial intelligence. Sustainability, 12(3), 1285.

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2016). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453.

Chen, J. H., Edelsberg, J. S., & Li, F. Y. (2018). Computer-based predictive modeling to identify frailty patterns in older adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 73(6), 772–779.

Krumholz, H. M., & Terry, S. F. (2020). Waldenstrom: Technology and humanity—The future of medicine. Circulation: Cardiovascular Quality and Outcomes, 13(1), e006456.

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347–1358.

Shortliffe, E. H., Sepúlveda, M. J., & Gift, T. (2018). Biomedical informatics in the education of physicians. JAMA, 320(11), 1151–1152.

Wang, F., & Preininger, A. (2019). Artificial intelligence in cardiology. Current Cardiology Reports, 21(10), 126.

Johnson, K. W., Torres Soto, J., Glicksberg, B. S., & Shameer, K. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679.

Churpek, M. M., Yuen, T. C., Winslow, C., Meltzer, D. O., & Kattan, M. W. (2016). Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Critical Care Medicine, 44(2), 368.

Johnson, A. E., Pollard, T. J., & Mark, R. G. (2016). Reproducibility in critical care: A mortality prediction case study. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 223–232.

O'Connor, M. F., Irwin, M. R., & Wellisch, D. K. (2009). When grief heats up: Pro-inflammatory cytokines predict regional brain activation. NeuroImage, 47(3), 891–896.

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., & Hardt, M. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 1–10.

Wang, Y., & Zhang, Y. (2019). Integrating multi-omics data for the discovery of biomarkers in cardiovascular diseases. Frontiers in Cardiovascular Medicine, 6, 176.

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56.

Most read articles by the same author(s)

1 2 3 4 > >>